Recherche Volcanologie

Volcanologie

  • Responsable d’équipe : Valérie Cayol. Responsable-adjoint : Karim Kelfoun.

    Notre équipe est l’une des plus importantes en volcanologie sur le plan international. Elle compte en effet une quarantaine de personnes, dont 24 chercheurs et enseignants-chercheurs permanents, et une vingtaine de doctorants et post-doctorants. Nous abordons une large gamme de thématiques et de méthodes, depuis le transport et les conditions de stockage des magmas dans la croûte jusqu’à la dynamique interne des volcans et les processus éruptifs en surface, et leurs implications en terme de risques volcaniques. Notre approche consiste à coupler les observations et mesures (terrain et télédétection par satellite), aux expérimentations en laboratoire et modélisations numériques. Outre les collaborations avec de nombreux observatoires sur volcans actifs, nous portons un effort particulier sur les volcans des pays partenaires de l’IRD (Chili, Equateur, Indonésie, Pérou, Vanuatu).

    Axes de recherche :

    – Transport et stockage de magmas dans la croûte (flux et échelles de temps, formation des réservoirs).

    – Processus physiques et structure interne des édifices (déformation, sismicité, systèmes hydrothermaux, tomographie muonique) ;

    –  Processus dans les conduits et les panaches (fragmentation, styles éruptifs, suivi et caractérisation par télédétection, dégazage magmatique) ;

    – Écoulements volcaniques (modélisation des coulées de lave, écoulements pyroclastiques, avalanches de débris, tsunamis, lahars, et aléas associés) ;

    –  Evolution des édifices volcaniques (évolution pétro-géochimique, structurale et géomorphologique) ;

    Contribution aux Services d’Observation (SO) de l’OPGC : surveillance satellite de l’activité volcanique (HotVolc), interférométrie radar (OI²), radar Doppler (Voldorad), flux de SO2 par spectrométrie d’absorption (GazVolc), base de données sur les produits éruptifs (DynVolc), électromagnétisme, gravimétrie et sismologie (Réseau Sismologique Auvergne).

    Collaborations sur le site de Clermont : LaMP (Laboratoire de Météorologie Physique), LPC (Laboratoire de Physique Corpusculaire), LM (Laboratoire de Mathèmatiques), LIMOS (Laboratoire Informatique, Modélisation et Optimisation des Systèmes), MSH (Maison des Sciences de l’Homme), CERDI (Centre d’Etude et de Recherches sur le Développement International).

  • Liste du personnel

    44 personnes :

    Aumar Cyril
    Bani Philipson
    Barnoud Anne
    Battaglia Jean
    Bernard Karine
    Boudoire Guillaume
    Bougouin Alexis
    Buvat Solène
    Cayol Valérie
    Chevrel Oryaëlle
    Donnadieu Franck
    Druitt Tim
    Dumont Quentin
    Eychenne Julia
    Flaherty Taya
    Froger Jean-Luc
    Gailler Lydie
    Gilchrist Johanand
    Gouhier Mathieu
    Guilbaud Marie-Noëlle
    Gurioli Lucia
    Harris Andrew
    Hrysiewicz Alexis
    Kelfoun Karim
    Labazuy Philippe
    Le Thu Trang
    Le Pennec Jean-Luc
    Lénat Jean-François
    Menand Thierry
    Merciecca Charley
    Merle Olivier
    Morin Julie
    Moussallam Yves
    Pailot-Bonnetat Sophie
    Paris Raphaël
    Prival Jean-Marie
    Roche Olivier
    Tadini Alessandro
    Thivet Simon
    Thouret Jean-Claude
    Van Wyk De Vries Benjamin
    Venugopal Swetha
    Vereb Viktor
    Zlotnicki Jacques

    Équipe Volcanologie – Juillet 2019

  • La plateforme « Volcanologie physique » regroupe l’ensemble des dispositifs utilisés pour l’étude expérimentale des phénomènes volcaniques (laboratoire de volcanologie expérimentale), les instruments permettant la caractérisation texturale des produits volcaniques (morpho-granulomètre G3, pycnomètres, et perméamètre du laboratoire d’analyse texturale), des appareils de mesures géophysiques (DGPS, tomographie par résistivité, polarisation spontanée, sondages électromagnétiques, ERT, GPR, stations sismiques), et des outils de télédétection satellitaire et sol (radars doppler, DOAS, MultiGas, caméras IR, drones et laboratoire de traitement d’image). A noter qu’une partie de ces instruments relèvent des services d’observation de l’OPGC.

  • Année 2019 – Rang A :

    50 publication(s) trouvée(s).
    1. Bablon M., Quidelleur X., Samaniego P., Le Pennec J.L., Audin L., Jomard H., Blaize S., Liorzou C., Hidalgo S., Alvarado A. (2019). Interactions between volcanism and geodynamics in the southern termination of the Ecuadorian arc. Tectonophysics vol.751, p.54-72, DOI:10.1016/j.tecto.2018.12.010 .
    2. Barnoud A., Cayol V., Niess V., Cârloganu C., Lelièvre P., Labazuy P., Le Menedeu E. (2019). Bayesian joint muographic and gravimetric inversion applied to volcanoes. Geophysical Journal International vol.218, p.2179-2194, DOI:10.1093/gji/ggz300 .
    3. Battaglia J., Hidalgo S., Bernard B., Steel A., Arellano S., Acuna K. (2019). Autopsy of an eruptive phase of Tungurahua volcano (Ecuador) through coupling of seismo-acoustic and SO2 recordings with ash characteristics. Earth and Planetary Science Letters vol.511, p.223-232, 10.1016/j.epsl.2019.01.042 (ed.).
    4. Bernard K., Van Wyk De Vries B., Thouret J.C. (2019). Fault textures in volcanic debris-avalanche deposits and transformations into lahars: The Pichu Pichu thrust lobes in south Peru compared to worldwide avalanche deposits. Journal of Volcanology and Geothermal Research vol.371, p.116-136, DOI:10.1016/j.jvolgeores.2019.01.008 .
    5. Breard E.C.P., Dufek J., Roche O. (2019). Continuum Modeling of Pressure‐Balanced and FluidizedGranular Flows in 2‐D: Comparison With Glass BeadExperiments and Implications for ConcentratedPyroclastic Density Currents. Journal of Geophysical Research - Solid Earth vol.124, p.5557-5583, DOI:10.1029/2018JB016874 .
    6. Bromley G.R.M., Thouret J.C., Schimmelpfennig I., Mariño J., Valdivia D., Rademaker K., del Pilar Vivanco Lopez S., ASTER Team, Aumaître G., Bourlès D., Keddadouche K. (2019). In situ cosmogenic 3He and 36Cl and radiocarbon dating of volcanic deposits refine the Pleistocene and Holocene eruption chronology of SW Peru. Bulletin of Volcanology vol.81, 64, DOI:10.1007/s00445-019-1325-6 .
    7. Chevrel O., Harris A., Ajas A., Biren J., Gurioli L., Calabrò L. (2019). Investigating physical and thermal interactions between lava and trees: the case of Kīlauea’s July 1974 flow. Bulletin of Volcanology vol.81, p.6, DOI:10.1007/s00445-018-1263-8 .
    8. Chevrel O., Pinkerton H., Harris A. (2019). Measuring the viscosity of lava in thefield: A review. Earth Sciences Reviews vol.196, DOI:10.1016/j.earscirev.2019.04.024 .
    9. Costard F., Séjourné A., Lagain A., Ormö J., Rodriguez J.A.P., Clifford F., Bouley F., Kelfoun K., Lavigne F. (2019). The Lomonosov Crater Impact Event: A Possible Mega‐Tsunami Source on Mars. Journal of Geophysical Research - Planets vol.124, p.1840-1851, 7, DOI:10.1029/2019JE006008 .
    10. Druitt T., McCoy F.W., Vougioukalakis E. (2019). The Late Bronze Age Eruption of Santorini Volcano and Its Impact on the Ancient Mediterranean World. Elements vol.15, p.185-190, DOI:10.2138/gselements.15.3.185 .
    11. Druitt T., Pyle D.M., Mather T. A. (2019). Santorini Volcano and its Plumbing System. Elements vol.15, p.177-184, DOI:10.2138/gselements.15.3.177 .
    12. Druitt T., Vougioukalakis G.E. (2019). South Aegean Volcanic Arc. Elements vol.15, p.74 p., 3.
    13. Elahpour E., Nauret F., Médard E., Benbakkar M., Quéinnec G., Van Wyk De Vries B. (2019). The Petrogenesis and Geochemistry of Tabas Black Land volcanic field: implications for volcanic activity along the Nayband fault, East Iran. Volcanica vol.2, p.105-127, 2, DOI:10.30909/vol.02.02.105127 .
    14. Freret-Lorgeril V., Donnadieu F., Eychenne J., Soriaux C., Latchimy T. (2019). In situ terminal settling velocity measurements at Stromboli volcano: Input from physical characterization of ash. Journal of Volcanology and Geothermal Research vol.374, p.62-79, DOI:10.1016/j.jvolgeores.2019.02.005 .
    15. Gailler L., Kauahikaua J. (2019). Gravity signature of basaltic fill in Kīlauea caldera, Island of Hawai‘i. In : Field Volcanology: A Tribute to the Distinguished Career of Don Swanson, DOI:10.1130/2018.2538(13) .
    16. Gailler L., Kauahikaua J., Lénat J.F., Revil A., Gresse M., Ahmed A.S., Cluzel N., Manthilake G., Gurioli L., Johnson T., Finizola A., Delcher E. (2019). 3D electrical conductivity imaging of Halema‘uma‘u lava lake(Kīlauea volcano). Journal of Volcanology and Geothermal Research vol.381, p.185-192, DOI:10.1016/j.volgeores.2019.06.001 .
    17. Gouhier M., Eychenne J., Azzaoui N., Guillin A., Deslandes M., Poret M., Costa A., Husson P. (2019). Low efficiency of large volcanic eruptions in transporting very fine ash into the atmosphere. Scientific Report vol.9, p.1449, DOI:10.1038/s41598-019-38595-7 1 .
    18. Gouhier M., Paris R. (2019). SO2 and tephra emissions during the December 22, 2018Anak Krakatau flank-collapse eruption. Volcanica vol.2, p.91-103, 2, DOI:10.30909/vol.02.02.91103 .
    19. Gourgaud A., Boivin P. (2019). Le phréatomagmatisme dans le Massif central français. vol.Mémoire n°8, p.95-104, in : Histoire de la découverte géologique du Massif central français.
    20. Gueugneau V., Kelfoun K., Druitt T. (2019). Investigation of surge-derived pyroclastic flow formation by numerical modelling of the 25 June 1997 dome collapse at Soufrière Hills Volcano, Montserrat. Bulletin of Volcanology vol.81, p.25, DOI:10.1007/s00445-019-1284-y .
    21. Harris A., Chevrel O., Coppola D., Ramsey M.S., Hrysiewicz A., Thivet S., Villeneuve N., Favalli M., Peltier A., Kowalski P., Di Muro A., Froger J.L., Gurioli L. (2019). Validation of an integrated satellite-data-driven response to an effusive crisis: the April–May 2018 eruption of Piton de la Fournaise. Annals of Geophysics vol.61, DOI:10.4401/ag-7972 .
    22. Harris A., Mannini S., Thivet S., Chevrel O., Gurioli L., Villeneuve N., Di Muro A., Peltier A. (2019). How shear helps lava to flow. Geology vol.48, p.154-158, 2, DOI:10.1130/G47110.1 .
    23. Laumonier M., Karakas O., Bachmann O., Gaillard F., Lukács R., Seghedi L., Menand T., Harangi S. (2019). Evidence for a persistent magma reservoir with large melt content beneath an apparently extinct volcano. Earth and Planetary Science Letters vol.521, p.79-90, DOI:10.1016/j.epsl.2019.06.004 .
    24. Lelièvre P.G., Barnoud A., Niess V., Cârloganu C., Cayol V., Farquharson C.G. (2019). Joint inversion methods with relative density offset correction for muon tomography and gravity data, with application to volcano imaging. Geophysical Journal International vol.218, p.1685-1701, DOI:10.1093/gji/ggz251 .
    25. Lévy L., Maurya P.K., Byrdina S., Vandemeulebrouck J., Sigmundsson F., Árnason K., Ricci T., Deldicque D., Roger M., Gibert B., Labazuy P. (2019). Electrical resistivity tomography and time-domain induced polarization field investigations of geothermal areas at Krafla, Iceland: comparison to borehole and laboratory frequency-domain electrical observations. Geophysical Journal International vol.218, p.1469-1489, 3, DOI:10.1093/gji/ggz240 .
    26. Maccaferri F., Smittarello D., Pinel V., Cayol V. (2019). On the Propagation Path of Magma Filled Dikes and Hydrofractures: The Competition Between External Stress, Internal Pressure, and Crack Length. Geochemistry, Geophysics, Geosystems vol.20, p.2064-2081, DOI:10.1029/2018GC007915 .
    27. Martin S.S., Linlin L., Okal E., Morin J., Tetteroo A., Switzer A., Sieh K. (2019). Reassessment of the 1907 Sumatra ‘‘Tsunami Earthquake’’ Based on Macroseismic, Seismological, and Tsunami Observations and Modeling. Pure and Applied Geophysics DOI:10.1007/s00024-019-02134-2 .
    28. Marzano F.S., Mereu L., Scollo S., Donnadieu F., Bonadonna C. (2019). Tephra Mass Eruption Rate from X-Band and L-Band Microwave Radars during the 2013 Etna Explosive Lava Fountain. IEEE Transactions on Geoscience and Remote Sensing DOI:10.1109/TGRS.2019.2953167 .
    29. Moussallam Y., Longpré M.A., McCammon C., Gomez-Ulla A., Rose-Koga E., Scaillet B., Peters N., Gennaro E., Paris R., Oppenheimer C. (2019). Mantle plumes are oxidised. Earth and Planetary Science Letters vol.527, p.115798, DOI:10.1016/j.epsl.2019.115798 .
    30. Moussallam Y., Oppenheimer C., Scaillet B. (2019). On the relationship between oxidation state and temperature of volcanic gas emissions. Earth and Planetary Science Letters vol.520, p.260-267, DOI:10.1016/j.epsl.2019.05.036 .
    31. Moussallam Y., Rose-Koga E., Koga K., Médard E., Bani P., Devidal J.L., Tari D. (2019). Fast ascent rate during the 2017–2018 Plinian eruption of Ambae (Aoba) volcano: a petrological investigation. Contribution to Mineralogy & Petrology DOI:0.1007/s00410-019-1625-z .
    32. Pansino S., Calder E.S., Menand T. (2019). Experimental analysis of bubble-driven magma motionin the conduit, for persistently active, open-vent volcanoes. Bulletin of Volcanology vol.81, p.75, DOI:10.1007/s00445-019-1339-0 .
    33. Paris R., Falvard S., Chagué C., Goff J., Etienne S., Doumalin P. (2019). Sedimentary fabric characterized by X‐ray tomography: A case‐study from tsunami deposits on the Marquesas Islands, French Polynesia. Sedimentology DOI:10.1111/sed.12582 .
    34. Paris R., Ulvrova M. (2019). Tsunamis generated by subaqueous volcanic explosions in Taal Caldera Lake, Philippines. Bulletin of Volcanology vol.81, p.14, DOI:10.1007/s00445-019-1272-2 .
    35. Paris R., Ulvrova M., Selva J., Brizuela B., Costa A., Grezio A., Lorito S., Tonini R. (2019). Probabilistic hazard analysis for tsunamis generated by subaqueous volcanic explosions in the Campi Flegrei caldera, Italy. Journal of Volcanology and Geothermal Research vol.379, p.106-116, DOI:10.1016/j.jvolgeores.2019.05.010 .
    36. Pioli L., Harris A. (2019). Real-Time Geophysical Monitoring of Particle Size Distribution During Volcanic Explosions at Stromboli Volcano (Italy). Frontiers in Earth Science vol.7, p.52, DOI:10.3389/feart.2019.00052 .
    37. Poret M., Finizola A., Ricci T., Ricciardi G.P., Linde N., Mauri G., Barde-Cabusson S., Guichet X., Baron L., Shakas A., Gouhier M., Levieux G., Morin J., Roulleau E., Sortino F., VassalloR., Di Vito M.A., Orsi G. (2019). The buried caldera boundary of the Vesuvius 1631 eruption revealed by present-day soil CO2 concentration. Journal of Volcanology and Geothermal Research DOI:10.1016/j.jvolgeores.2019.01.029 .
    38. Portal A., Fargier Y., Labazuy P., Lénat J.F., Boivin P., Miallier D. (2019). 3D electrical imaging of the inner structure of a complex lava dome, Puy de Dôme volcano (French Massif Central, France). Journal of Volcanology and Geothermal Research vol.373, p.97-107, DOI:10.1016/j.jvolgeores.2019.01.019 .
    39. Roche O., Carazzo G. (2019). The contribution of experimental volcanology to the study of the physics of eruptive processes, and related scaling issues: A review. Journal of Volcanology and Geothermal Research vol.384, p.103-150, DOI:10.1016/j.jvolgeores.2019.07.011 .
    40. Sahyoun M., Freney E., Brito J., Duplissy J., Gouhier M., Colomb A., Dupuy R., Bourianne T., Nowak J.B., Yan C., Petäjä T., Kulmala M., Schwarzenboeck A., Planche C., Sellegri K. (2019). Evidence of New Particle Formation Within Etna andStromboli Volcanic Plumes and Its ParameterizationFrom Airborne In Situ Measurements. Journal of Geophysical Research: Atmospheres vol.124, p.5650-5668, DOI:10,1029/2018JD028882 .
    41. Smittarello D., Cayol V., Pinel V., Froger J.L., Peltier A., Dumont Q. (2019). Combining InSAR and GNSS to Track Magma Transport at Basaltic Volcanoes. Remote Sensing vol.11, p.2236, DOI:10.3390/rs11192236 .
    42. Smittarello D., Cayol V., Pinel V., Peltier A., Froger J.L., Ferrazzini V. (2019). Magma propagation at Piton de la Fournaise from joint inversion of InSAR and GNSS. Journal of Geophysical Research - Solid Earth DOI:10.1029/2018JB016856 .
    43. Soria-Hoyo C., Valverde J.M., Roche O. (2019). A laboratory-scale study on the role of mechanical vibrations in pore pressure generation in pyroclastic materials: implications for pyroclastic flows. Bulletin of Volcanology vol.81, p.12, DOI:10.1007/s00445-019-1271-3 .
    44. Valentine G., Briner J.P., Van Wyk De Vries B., Macorps E., Gump D. (2019). 10Be exposure ages for the Late Pleistocene Gour de Tazenat maar (Chaîne des Puys volcanic field, Auvergne, France). Quaternary Geochronology vol.50, p.8-13, DOI:10.1016/j.quageo.2018.11.002 .
    45. Venugopal S., Moune S., Williams-Jones G., Druitt T., Vigouroux N., Wilson A., Russell J.K. (2019). Two distinct mantle sources beneath the Garibaldi Belt: Insight from olivine-hosted melt inclusions. Chemical Geology vol.532, p.119356, DOI:10.1016/j.chemgeo.2019.119346 .
    46. Vougioukalakis G.E., Satow C.G., Druitt T. (2019). Volcanism of the South Aegean Volcanic Arc. Elements vol.15, p.159-164, DOI:10.2138/gselements.15.3.159 .
    47. Warnach S., Bobrowski N., Hidalgo S., Arellano S., Sihler H., Dinger F., Lübcke P., Battaglia J., Steele A., Galle B., Platt U., Wagner T. (2019). Variation of the BrO/SO2Molar Ratio in the Plume of Tungurahua Volcano Between 2007 and 2017 and Its Relationship to Volcanic Activity. Frontiers in Earth Science DOI:10.3389/feart.2019.00132 .
    48. Weit A., Roche O., Dubois T., Manga M. (2019). Maximum Solid Phase Concentration in GeophysicalTurbulent Gas‐Particle Flows: Insights FromLaboratory Experiments. Geophysical Research Letters vol.46, p.6388-6396, DOI:10.1029/2019GL082658 .
    49. Zobin V.M., Battaglia J., Melson W., Sudo Y. (2019). Two-stage modeling of Strombolian-type eruptions and quantification of themodel parameters: Insight from the seismic and acoustic signals. Physics of the Earth and Planetary Interiors vol.297, DOI:10.1016/j.pepi.2019.106318 .
    50. Zurek J., Moune S., Williams-Jones G., Vigouroux N., Gauthier P.J. (2019). Melt inclusion evidence for long term steady-state volcanism at Las Sierras-Masaya volcano, Nicaragua. Journal of Volcanology and Geothermal Research vol.378, p.16-28, DOI:10.1016/j.jvolgeores.2019.04.007 .

     

    Liste des publications

  • Les réponses à ces questions ont été élaborées en réponse à des questions d’élèves et d’étudiants par plusieurs chercheurs du laboratoire, Luca Teray, Raphael Paris, Karim Kelfoun et Valérie Cayol. Si toutefois ces réponses ne répondaient pas à vos questionnements, veuillez vous adresser à Valérie Cayol (valerie.cayol@uca.fr) ou à Karim Kelfoun (karim.kelfoun@uca.fr).

    Questions :

    Réponses :

    Quel est le nom précis de votre métier ?

    Pratiquement, la dénomination de notre métier est chercheur, enseignants chercheur, professeur ou physicien. On peut aussi être doctorant ou post-doctorant, mais ces postes correspondent à des CDD. Notre objet d’étude ce sont les volcans. On est chercheur en volcanologie. On peut aussi dire volcanologue ou vulcanologue bien sûr.

    Ce métier se situe dans quel secteur professionnel ?

    La fonction publique.

    Qui est votre employeur ?

    Les employeurs des chercheurs du Laboratoire Magmas et Volcans sont variés. Ce sont le Centre National de la Recherche Scientifique (CNRS), l’Université Clermont Auvergne (UCA) ou l’Institut de Recherches et Développement (IRD).

    Où se situe votre lieu de travail ?

    Les chercheurs ont des bureaux à l’université mais ils sont aussi amenés à faire des analyses en laboratoire et des campagnes de mesures sur des terrains parfois situés sur d’autres continents. Le laboratoire de recherche auquel nous sommes rattachés est une unité mixte de recherche, ce qui veut dire qu’il associe des chercheurs CNRS et une université. L’IRD et l’Université jean Monnet sont aussi associés au laboratoire.

    Quel est votre rythme de travail ?

    Statutairement les chercheurs travaillent 35 heures par semaines, et ont droit à 9 semaines de vacances. Mais les chercheurs sont en général passionnés par leur métier. C’est aussi un métier compétitif, si bien que les chercheurs ne comptent pas leurs heures. En pratique, les chercheurs travaillant 50 heures par semaine et il n’est pas rare qu’ils prennent moins de 5 semaines de vacances/an.

    Pourquoi avoir choisi ce métier ?

    Parce que c’est un métier qui permet de satisfaire sa curiosité. L’approche est très satisfaisante puisqu’elle consiste généralement à faire des allers retours entre observations de terrain, observations de laboratoire et simulations. En outre, on a une relative liberté dans le choix des domaines de recherches, des approches et des horaires.

    Quelle est la finalité de votre métier ?

    Voir par exemple la vidéo de présentation de l’équipe volcanologie http://lmv.uca.fr/recherche/volcanologie/ .

    Au Laboratoire Magmas et Volcans, nous cherchons à comprendre le volcanisme depuis sa source dans le manteau terrestre jusqu’à l’émission de produits volcaniques dans l’atmosphère. Les questions que l’on se pose sont de savoir pourquoi les volcans entrent en éruption, quels sont les signes précurseurs d’une éruption, quel type d’activité va survenir, comment cette activité évolue, quel est son impact sur les activités humaines (aviation, agriculture, santé, etc.), les plantes, les animaux et le climat. Outre les risques immédiatement liés à l’activité volcanique (coulées de lave, coulées de boues, coulées pyroclastiques, explosions, bombes volcaniques et cendres, tsunamis), les volcans rejettent des gaz à effet de serre (CO2), des gaz acides (SO2) et des cendres ayant un impact sur le climat et les populations.

    A quels besoin répondez-vous en exerçant ce métier ?

    A un besoin de compréhension du monde qui nous entoure . Certaines de nos recherches permettent aussi de mieux évaluer les risques associés au volcanisme. Nous participons également à la transmission des savoirs à la société via les enseignements à l’université et nos échanges avec les médias (journaux, télévision, radio, cinéma, festivals).

    Pouvez-vous décrire concrètement les activités que vous faites souvent, pour que je me représente votre quotidien au travail ?

    Pour mener à bien nos recherches nous combinons les observations sur le terrain (avec des appareils de mesures in situ ou à distance, avec des drones ou des satellites), les observations de laboratoire (analyse physico-chimique des produits volcaniques, expériences physiques), et les modèles qu’ils soient effectués par des dispositifs de laboratoire ou sur des ordinateurs. Le but de ces modèles est de mieux comprendre les processus physiques qui gouvernent les comportements observés. La nature étant complexe, on simplifie les problèmes pour étudier des paramètres particuliers. Mais, comme beaucoup de gens, au quotidien nous passons la plupart de notre temps devant un ordinateur, car il faut non seulement traiter les données mais aussi monter des projets pour obtenir des financements, rédiger des rapports et des publications, préparer des conférences, discuter par mail ou visioconférences avec d’autres collègues, ce à quoi se rajoute un peu de travail administratif.

    Racontez-moi une journée-type au travail

    Les chercheurs passent du temps à encadrer des étudiant, à écrire des projets, à administrer leur recherche et celle des autres, à lire et écrire des articles, préparer des conférences et aussi bien sûr faire leur recherche (analyse de séries de données, analyses en laboratoire, modélisations, etc.).

    Quels sont les autres professionnels avec qui vous travaillez ? (travail seul / en équipe / partenaires…)

    Nous sommes chacun spécialiste d’un domaine bien spécifique (les coulées de lave, les séismes volcaniques, les tsunamis, les gaz, etc.). Pour mieux comprendre le volcanisme et son impact, nous devons travailler avec d’autres chercheurs du laboratoire ayant des spécialités complémentaires, et avec les chercheurs d’autres laboratoires : des mathématiciens, des informaticiens, des physiciens, des médecins, etc. Comme nos études impliquent des observations de volcans, nous collaborons avec des observatoires volcanologiques situés sur le territoire national (à l’île de la Réunion, à la Guadeloupe ou à la Martinique) ou à l’étranger. Nous collaborons aussi parfois avec des professionnels du secteur privé pour des recherches liées aux géomatériaux, à l’hydrologie, à la géothermie ou aux risques naturels.

    Quels sont les qualités indispensables pour réaliser votre métier ?

    Il faut être curieux et passionné, avoir un bon sens physique, et être excellent d’un point de vue académique. Il faut être très autonome et avoir ses propres questionnements, tout en ayant la capacité de travailler en équipe. Il faut aussi savoir communiquer oralement dans des conférences, comme par écrit au travers d’articles qui seront publiés en anglais dans des revues scientifiques. Il est de nos jours nécessaire de parler couramment anglais.

    Présentez-moi les points positifs sur votre métier

    C’est un métier qui nourrit nos questionnements sur le monde qui nous entoure. La possibilité de satisfaire notre curiosité est une grande source de satisfaction pour beaucoup de chercheurs.

    Nous avons une grande liberté : liberté de choisir nos thèmes de recherches dans la mesure où ces thèmes nous permettent d’obtenir des financements, liberté de choisir avec qui on veut travailler, relative liberté d’horaires. Tout ceci est possible à condition de produire des connaissances au travers d’articles publiés dans des revues scientifiques et de communications à des conférences.

    C’est aussi un métier qui permet d’être au carrefour de beaucoup de disciplines scientifiques (géologie, physique, chimie, mathématiques, informatique, géographie, économie, sociologie notamment), ce qui est très enrichissant, et qui donne l’opportunité de voyager et de rencontrer des gens de cultures différentes.

    En plus de leur recherche, les enseignants-chercheurs enseignent également, aussi bien en Licence (les trois premières années d’études après le bac) qu’en Master (quatrième et cinquième années d’étude après le bac). Les chercheurs et enseignants-chercheurs encadrent aussi des doctorants (trois ans de recherche après un Master). Nous sommes ainsi en contact permanent avec les étudiants, à enseigner, à questionner et à être questionnés.

    Présentez-moi les points négatifs sur votre métier

    Il est difficile de fixer des limites à ce que l’on veut et peut faire. On amène souvent du travail chez nous et il est parfois difficile de se « déconnecter » du travail. C’est un métier passion qui a les défauts de ses qualités. Les salaires des chercheurs ne sont pas particulièrement élevés et diffèrent peu selon leur grade et les responsabilités qui leur incombent. Les possibilités de promotion sont limitées. Bref, on ne fait pas ce métier pour l’argent. Par exemple, un chercheur avec dix années d’ancienneté gagne à peine 2500 euros nets par mois.

    Est ce qu’un volcanologue va près des volcans actifs pour les étudier ?

    L’image du volcanologue est, dans l’imaginaire collectif, attachée à celle d’un aventurier en combinaison réfléchissante effectuant des mesures à quelques mètres de la lave en fusion, ou bien descendant dans un cratère fumant ! Cette vision provient en grande partie des documentaires et des ouvrages d’Haroun Tazieff et de Katia et Maurice Kraft qui ont effectués dans la seconde moitié du 20e siècle. Néanmoins, elle ne correspond plus vraiment à la réalité du travail de volcanologue. De nos jours, il est désormais possible de surveiller les volcans à distance, à l’aide de satellites, de drones ou de stations installées sur les volcans qui transmettent leurs mesures à l’autre bout du monde. Les volcanologues ne sont donc plus les baroudeurs des années 70. Beaucoup de chercheurs étudient aussi les volcans en laboratoire ou numériquement, ce qui ne demande pas de se rendre sur le terrain. Cependant, il restera toujours nécessaire d’aller près des volcans actifs pour mieux les comprendre. Parmi les activités du volcanologue d’aujourd’hui sur le terrain qui ne vont pas disparaître de si tôt, on recense notamment:

    • l’installation et la maintenance de stations de mesure (sismomètres, gnss, caméras, analyseurs de gaz, etc…) sur les volcans
    • la récolte d’échantillons (roches, cendres, lave, gaz) que l’on analysera au laboratoire pour mieux comprendre les éruptions récentes comme anciennes
    •  le test de nouvelles techniques de mesure et d’observation en cours de développement au laboratoire et qui seront amenées à faire partie dans le futur de la panoplie des volcanologues (l’exemple le plus emblématique est l’application des drones pour la volcanologie).
    •  la réalisation d’enquête (cartographiques mais aussi géographiques et sociologiques) dans les régions volcaniques pour évaluer la vulnérabilité aux aléas volcaniques et le risque qui en découle

    Notons enfin que certaines de ces activités nécessitent parfois de se rendre dans des zones très actives (coulées de lave, lèvre de cratère, ou encore champ de fumerolles par exemple) même si c’est de plus en plus rare. Ces opérations se font bien entendu après une évaluation extrêmement rigoureuse des risques et avec un équipement spécialement conçu pour se protéger des dangers éventuels.

    Si jamais vous devez aller sur le terrain, quelles sont les premières difficultés que vous rencontrerez lors de ces excursions ?

    Les terrains volcaniques sont très variés, ils peuvent se situer sur tous les continents avec toutes les variétés de régime politique que cela implique, ils peuvent se trouver au niveau de la mer à Hawaii jusqu’à presque 7000m d’altitude dans les Andes (sans parler des volcans sous-marins), il peut faire plus de 40°C dans la région de l’Afar en Ethiopie, comme -20°C sur l’Erebus en Antarctique. Ils peuvent se situer à quelques minutes d’une grande ville (comme par exemple le Vésuve et Naples) comme à des centaines de km de toute zone habitée (certains volcans des îles Aléoutiennes par exemple). Le volcan peut-être inactif comme en éruption. Bref, il faut s’attendre à tout ! C’est pourquoi toutes les missions doivent être soigneusement préparées, tant du point de vue scientifique (programme de travail et plans de secours), naturel (météo, activité) que logistique (logement, transport, alimentation, santé), sans négliger les aspects administratifs (autorisations, douanes) qui peuvent s’avérer décisifs. En résumé, une mission très bien préparée est souvent une mission réussie (quelle que soient les conditions), et le plus difficile est surtout de bien se préparer, ce qui s’apprend par expérience.

    Quel est le diplôme ou la formation nécessaire aujourd’hui pour exercer votre métier ?

    Il faut un doctorat (baccalauréat + 8 années d’études), et en général avoir effectué un ou plusieurs post-doctorats (CDD en recherche), souvent à l’étranger. Il faut avoir un parcours académique exemplaire et avoir montré que l’on menait une recherche autonome amenant à des publications dans des revues internationales réputées. Typiquement, le CNRS recrute 5 chercheurs en sciences de la terre par an pour tout le pays. En 2020, il y a 80 candidats pour ces 5 postes. Le dernier chercheur recruté par le CNRS dans l’équipe Volcanologie du Laboratoire Magmas et Volcans l’a été en 2006. En ce qui concerne les autres types de postes, l’équipe Volcanologie a recruté 1 professeur, 2 maîtres de conférence, 2 physiciens et 3 chercheurs rattachés à l’IRD sur les dix dernières années. C’est donc un métier très compétitif. La compétition continue encore pour obtenir des financements permettant de mener à bien nos projets (environ 10 % des projets déposés à l’Agence Nationale de la Recherche sont subventionnés). Pour faire face à cette compétition, et persévérer malgré les difficultés qui se peuvent se présenter, il faut une solide motivation.

Print Friendly, PDF & Email
Top