Déterminer la composition chimique du noyau terrestre est un grand défi que les scientifiques essaient de relever depuis plusieurs décennies. En particulier, la teneur du noyau en hydrogène (élément considéré comme sidérophile(1)) reste très incertaine. Des chercheurs issus de trois laboratoires français(2) ont étudié le comportement de l’hydrogène, et notamment mesuré son partage entre l’alliage métallique riche en fer et le silicate, en recréant en laboratoire les conditions ayant régné lors de la formation du noyau terrestre (haute pression, haute température et quantités raisonnables d’eau) à l’aide de la presse multi-enclume du LMV. Il s’avère que l’hydrogène se comporte comme un élément lithophile (il préfère rester dans la partie silicatée) et que seule une quantité infime d’hydrogène incorpore le noyau des planètes telluriques lors de la ségrégation noyau-manteau, un comportement qui favorise la formation précoce d’un manteau et d’une atmosphère riches en eau.

Les planètes telluriques, telles que la Terre et Mars, sont différenciées : elles possèdent en leur centre un noyau métallique composé essentiellement de Fer. Il est entouré d’un manteau rocheux (silicaté). Ce noyau s’est formé dans les premiers millions d’années de l’accrétion planétaire, lorsque ces planètes étaient encore très chaudes et couvertes par un océan magmatique de plusieurs centaines de kilomètres de profondeur. Dans cet océan magmatique, les particules de métal plus denses ont naturellement ségrégées pour former le noyau. Au cours de sa descente, le métal s’est équilibré avec les silicates liquides et a incorporé un certain nombre d’éléments légers, tels que l’oxygène, le silicium, le soufre, ainsi que potentiellement l’hydrogène. A ce jour, l’abondance des différents éléments légers dans les noyaux planétaires restent méconnue.

 

 

Image de microscopie électronique à balayage montrant un échantillon préparé à 5 GPa et 2000 °C. L’hydrogène intègre préférentiellement le silicate (matrice grise) lors de la mise en équilibre avec le métal (billes claires). Par conséquence, une quantité très faible d’hydrogène, avec un maximum estimé à 70 ppm, devrait intégrer le noyau lors de la ségrégation noyau-manteau dans les planètes telluriques.

 

 

Pour étudier le comportement de l’hydrogène, les chercheurs ont recréé expérimentalement les conditions de formation du noyau à haute pression et à haute température. Les concentrations en hydrogène dans le silicate et dans le métal ont été déterminées avec précision à l’aide d’une microsonde nucléaire en utilisant la technique ERDA (Elastic Recoil Detection Analysis). Dans les silicates, ces analyses ont été confirmées par la spectroscopie infra-rouge (FTIR – Fourier Transform Infra-Red Spectroscopy). Les analyses montrent que l’hydrogène est moins siderophile que d’autres éléments légers comme le silicium, l’oxygène, le carbone ou le soufre. Le partage de l’hydrogène entre les phases métal et silicate (DH = poids% dans le métal / poids% dans le silicate) est compris entre 10-2 et 8×10-1, en net contraste avec les résultats antérieurs montrant un DH d’environ 10. L’explication de cette différence réside dans le fait que cette nouvelle étude a été réalisée avec des teneurs en H2O bien plus représentatives de la formation des noyaux planétaires que les études antérieures, et pour des alliages de fer contenant les éléments légers importants dans les noyaux planétaires.
En se basant sur les teneurs en hydrogène les plus élevées des matériaux météoritiques ayant participés à l’accrétion terrestre, cette étude conclue que la concentration en hydrogène dans le noyau doit être inférieure à 70 ppm. De ce fait, le manteau contient l’essentiel de l’hydrogène disponible après la ségrégation du noyau. Cet hydrogène est alors inclus dans le magma et peut éventuellement être relâché en surface pour la formation d’une atmosphère riche en H2 ou H2O.

Note(s):
  1. qui accompagne le fer lors de la formation du noyau
  2. Laboratoire magmas et volcans (LMV/OPGC, UCA / CNRS / IRD / UJM), Groupe LEEL (Laboratoire d’étude des éléments légers) du laboratoire Nanosciences et innovation pour les matériaux, la biomédecine et l’énergie (NIMBE, CEA / CNRS) et Institut de minéralogie et de physique de la matière et de cosmochimie (IMPMC/Ecce Terra, Sorbonne université / CNRS / IRD / MNHN)
Source(s):

V. Clesi, M.A. Bouhifd, N. Bolfan-Casanova, G. Manthilake, F. Schiavi, C. Raepsaet, H. Bureau, H. Khodja & D. Andrault (2018) Low hydrogen contents in the cores of terrestrial planets, Science Advances, doi:10.1126/sciadv.1701876

Contact(s):