Andrault_Denis

Professeur des Universités, UCA
Équipe de Pétrologie
Axes: Terre Primitive -
Chercheur
Bureau: 1.15 - LMV Cezeaux
Téléphone: 04.73.34.67.81
Courriel : Denis.Andrault@uca.fr

  • Education :

    1998         HDR, Accreditation to supervise research, Université Denis Diderot, Paris 7. Specialty: Earth Science

    1990         PhD of Université Pierre et Marie Curie, Paris 6. Specialty: Material Sciences. The research work was performed at Institut de Physique du Globe de Paris

    1987         Master’s degree from Université Pierre et Marie Curie. Specialty: Physical Chemistry

    Positions :

    2006 –             Full Professor at Université Clermont Auvergne, Clermont-Ferrand. The research work is performed at Laboratoire Magmas et Volcans (LMV)

    1993 – 2006     Associate Professor at Paris-7. The research work was performed at Institut de Physique du Globe de Paris

    1992 – 1993     Post-Doc at Académie des Sciences, Paris

    1990 – 1992     Post-doc at Department of Advanced Ceramics, Montréal University, Montréal, Canada

    Fellowships and Awards :

    2020               Fellow of the American Geophysical Union

    2020-2024    Nomination at Académie CAP 20-25 of the Université Clermont Auvergne

    1999                Bronze Medal of Centre National de la Recherche Scientifique (CNRS)

    1998                 Dornbost Prize of the group « Study of the Earth Deep Interior » (SEDI)

    1992-1993       Fellowship from the French Académie des Sciences

    1987-1990       PhD grant from the French Ministère de l’éducation supérieure et de la Recherche

    Institutional Responsabilities :

    2022–              Director of Laboratory of Excellence ClerVolc

    2021-2026       « Research Council » of Université Clermont Auvergne

    2019-2022       « Steering Committee » of ClerVolc laboratory of excellence

    2016-2021        “Comité National de la Recherche Scientifique”, Section 18: Earth and Telluric planets

    2016-2025       “Pedagogic Council” of Observatoire de Physique du Globe de Clermont-Fd

    2014-2018       “Administrative Council” of Observatoire de Physique du Globe de Clermont-Fd

    2012–              « Laboratory Council » of Laboratoire Magmas et Volcans

    2010-2013       “Scientific Council” of Observatoire du Physique du Globe de Clermont-Fd (2010-2013)

    Pedagogic Responsabilities (since 2009) :

    2016-2025        “Pedagogic Council” of Observatoire de Physique du Globe de Clermont-Ferrand

    Scientific Management (since 2009) :

    2022–             Laboratory of Excellence ClerVolc

    2019-2022      Axis-7 of ClerVolc: Origin of Volcanoes and of the Earth

    2019-2022      Transversal axis of LMV: Geodynamic mechanisms of early Earth

    2007-2011       LMV node of the TMR network « from Crust to Core”

    2008-2010      Team Experimental petrology and magmatology of Laboratoire Magma et Volcans

    Scientific Expertises (since 2009) :

    2021-2026      « Research Council » of Université Clermont Auvergne

    2022                 “External Scientific Committee” of laboratory ISTerre, Grenoble, France

    2018-2022      “Recruitment committees »; LMV-Clermont-Ferrand, IPG-Paris, LPG-Nantes

    2016-2021       “Comité National de la Recherche Scientifique”, Section 18: Earth and Telluric planets

    2019                 Prospectives INSU-CNRS

    2014-2019      “Review Panels” of ESRF beamlines ID27, IB06-LVP, ID09HP, ID15

    2009-2017     « HCERES evaluation committees » of CNRS Laboratories: IST-Orléans, UMET-Lille

    2010-2016     “Program Committee” at synchrotrons: SOLEIL, Petra-III, Spring8

    2011-2014      “Steering and Advisor Committee” of Institut for Study of the Earth’s Interior, Misasa, Japan

    2010-2013     “Scientific Council” of Observatoire du Physique du Globe de Clermont-Ferrand

    Supervision of PhDs and Post-Docs :

    2021- Khan Siddharth (PhD, PI)

    2018-2022 Pierru Rémy (PhD, PI), Now Post-doc in Paris

    2016-2020 Freitas Damien (PhD, PI), now Post-doc in Edinburgh

    2014-2016 Monteux Julien (Post-doc, PI), now Researcher at CNRS

    2013-2016 Clesi Vincent (PhD, co-PI), now Post-doc at Rice University

    2012-2016 Pesce Giacomo (PhD, PI), now employed in Edimburgh

    2013-2015 Fabbrizio Alessandro (Post-doc, co-PI), now Ass. Prof. in Charles University – Prague

    2012-2014 Chantel Julien (Post-Doc, PI), now Research Engineer in UMET-Lille

    2010-2013 Boujibar Asmaa (PhD, PI), now Assistant Professor in Western Washington University

    2010-2013 Lo Nigro Giacomo (PhD, PI), now employee in the private sector

    2007-2011 Dalou Célia (PhD, PI), now Researcher at CNRS

    2009-2011 Bouhifd Ali (Visiting researcher, PI), now Director of Research at CNRS

    2005-2009 Bonnefoy Benjamin (PhD, PI), now employee in the private sector

    2003-2004 Kawamoto Tastuhiko (Visiting researcher, PI), now Professor at Shizuoka University (Japan)

    2002-2003 Bouhifd Ali (Visiting researcher, PI), now Director of Research at CNRS

    1999-2003 Guignot Nicolas (PhD, PI), now Beamline Scientist at SOLEIL

    2001-2003 Bolfan-Casanova Nathalie (PD, PI), now Director of Research at CNRS

    1997-2001 Charpin Thomas (PhD, PI), deceased

    1995-1999 Visocekas Fabrice (PhD, co-PI), now employee in the private sector

    1995-1999 Touchard Bruno (PhD, co-PI), now employee in the public sector

  • Academic Links :

    ORCID, Web of Science Publons, Google-Scholar

    Summary of Research Achievements :

    Bulk composition of the Earth: (i) We refined the “Enstatite Chondrite” (EH) model of the Earth (Javoy et al. 2010). The aim was to make the chemical model compatible with a maximum of available geophysical and geochemical constraints. This led to a reevaluation, compared to previous models, of the fractions of silicate, metal and sulfur initially present in the accreted meteoritic material. (ii) A few years later, we have evaluated the potential role of collisional erosion on the bulk composition of the Earth at the end of the accretion (Boujibar et al., 2015). We found that some major problems of the EH model can be overcome by the erosion of a proto-crust by meteoritic impacts, especially if the collisional erosion is less efficient for the most refractory chemical components.

    Early core-mantle interactions: (i) Based on experimental determination of the metal-silicate partitioning, we demonstrated that the hydrogen is much less siderophile (iron loving) than previously reported (Clesi et al., 2018). Our results suggest a level of ~60 ppm in the core and water preferentially segregated into the planetary mantles. When comparing the present-day H-content in the mantle and the amount of H present in the meteoritic materials, our results suggest that 90% of the water was lost during the accretion processes. (ii) The partition coefficients of K, Pb and U between metal and silicate indicates that these elements are not highly siderophile in conditions of the core-mantle segregation, especially if the S-content in the core is moderate (Bouhifd et al., 2007, 2013). Consequently, the radiogenic sources should play a minor role in the heat budget of the Earth’s core along its history.

    Crystallization of the magma ocean and secular cooling of the deep Earth: (i) We refined melting curves, solidus and liquidus, of the primitive chondritic-type mantle (Andrault et al. 2012). Major implications arises, in particular a present-day temperature of ~4000 K at the core-mantle boundary (Andrault et al., 2016). (ii) We also refined the thermal state of our planet during the crystallization of the magma ocean (Monteux et al., 2016) and demonstrated that the temperature of the young Earth’s core, several millions years after the giant Moon-forming impact, can hardly be more than ~300 K hotter than it is today (Andrault, 2019). (iii) We refined the Fe partition coefficient between the melt and the solid mantle residue in the conditions of the very deep mantle (Andrault et al., 2012). We show that even though Fe is an incompatible element, it does not concentrate strongly into the melt. Therefore, it is unlikely that the major lower mantle phase, bridgmanite, becomes buoyant at the early stages of the magma ocean crystallization. This makes unlikely the early formation of a basal magma ocean.

    A geodynamo favored by the presence of the Moon: It is an opened paradox that the core temperature at the core-mantle boundary only changed by ~300 K along the Earth’s history (Andrault et al., 2016; Monteux et al. 2016), while classical models of core cooling require a temperature change 5 to 10 times larger to power the geodynamo by thermal convection in the outer core. We proposed a model to overcome this paradox based on the mechanical forcing (solid tides, precession and libration) on the Earth due to the presence of the Moon. In this model, the core cooling would be slow and the inner core would have appeared 2-3 Ga ago.

    Final mantle crystallization at the Archaean to Proterozoic transition: Our new determination of the solidus profile in the upper mantle provides a potential explanation for the change of mantle dynamics, from regimes of “stagnant lid” to “plate tectonics”, about 2.5 Ga ago around the Archaean to Proterozoic transition (Andrault et al., 2018). During the Archaean, a mantle layer could have remained partially molten at mantle depths between 100 and 300 km, due to a mantle potential temperature 200-300 K higher than today. Then, the molten layer progressively disappeared with secular mantle cooling, possibly favoring the change of mantle-dynamic regime. A residual trace of this molten layer could be the low-velocity seismic zones observed today at a mantle depth of around 80 km.

    Impact of the redox state of the deep mantle on the Great Oxygen Event: We developed the proposal that the Great Oxygen Event (GOE), which had a major impact on the development of life on Earth, could be linked to the large amount of ferric iron (Fe3+) that can be stored in (Mg,Fe)(Si,Al)O3 bridgmanite, the major phase of the deep mantle (Andrault et al., 2018). The primordial mantle could have maintain an excess Fe3+ during the Archaean, when the deep mantle material remained more insulated from the Earth’s crust. Then, an improved mantle mixing favored by deep subduction of slabs could have mantle induced the release of a large amount of oxygen at the Earth’s surface about 2.5 Ga ago.

    Thermal state of the deep Earth: We performed an accurate determination of melting curves (solidus and liquidus) of the primitive chondritic-type mantle (Andrault et al., 2011) and of various Fe-alloys (e.g. Morard et al., 2014). Based on the seismic observation of partially molten ultra-low velocity zones in the lowermost mantle and the well-defined size of the inner core, we could refine a most accurate temperature profile in the deep Earth. Temperatures of ~4100 K and ~5600K are likely to prevail at the core-mantle boundary and surface of the inner core, respectively. It results a temperature change of 1250-1500 K in the first few hundred kilometers of the lowermost mantle. Such temperature change can induce the melting of the subducted basaltic crust at the core vicinity, possibly explaining the ultra-low velocity zones detected by seismology (Andrault et al., 2014).

    Petrological interpretations of the low-velocity seismic regions: (i) We compared experimental measurements of Vp and Vs sound velocities for various mixtures of melt and olivine with the seismic signature of the low-velocity layer atop the mineralogical discontinuity at 410 km depth in the upper mantle (Chantel et al., 2016; Freitas et al., 2017). Our results show that a low-degree of partial mantle melting, less than 1%, is very compatible with the seismic anomalies. (ii) We proposed that the ultra-low velocity zones evidenced by seismology in the lowermost mantle could be explained by the partial melting of the basaltic component of the subducted slabs (Andrault et al., 2014). Indeed, basalt presents a solidus ~350K lower than the mean mantle at the pressure of ~135 GPa.

    Crystal chemistry of the lower mantle: (i) The diversity of stable minerals decreases rapidly with increasing mantle depth; however, it does not make the mineralogy much simpler. Indeed, the crystal chemistry of each phase is complicated by the effects of pressure, temperature and the presence of a number of atomic defects. For many years, I investigated the effect of Al and Fe3+ and other atomic defects on the properties of high-pressure minerals, such as bridgmanite, stishovite and CaSiO3-perovskite. (ii) We showed that pressure favors largely the coupled substitution of different atomic defects together in a same structure. This is particularly the case for Fe3+ and Al3+ in bridgmanite (Andrault et al. 2007). Concerning bridgmanite in the lower mantle, up to 40% of its iron adopt the valence Fe3+ at the highest pressures (Andrault et al., 2018). Such a high Fe3+ content can only be associated with the presence of metallic Fe0 for a typical mantle composition. Many other elements can be inserted in the structure of bridgmanite following the same mechanism (Andrault, 2003), however, the very large elements such as U4+ adopt the lattice of the CaSiO3 perovskite-type phase (Gréaux et al., 2009). (iii) The insertion of Al in the lattice induces a significant distortion of the unit cell lattice. In stishovite, it favors the phase transformation to the CaCl2-type polymorph at much lower pressure than for the Al-free sample (Bolfan-Casanova et al., 2009). In addition, it favors the coexistence of (Fe,Al)-bearing bridgmanite and post-bridgmanite phases in a large range of depth in the lowermost mantle (Andrault et al., 2010).

    Elastic properties of deep mantle Minerals: (i) After studying carefully the response of various minerals to increasing pressures and temperatures (e.g. Andrault et al. 1991, 1995, 2001), I participated to the first structural refinement (Andrault et al., 1998) and determination of PVT equation of state (Fiquet et al., 1998) at experimental conditions relevant to the deep mantle. This information was subsequently used to model the deep mantle mineralogy, based on seismic records. For example, we proposed that the lowermost mantle could be relatively depleted in MgO compared to the peridotitic upper mantle (Samuel et al., 2005). (ii) We showed that Al-defects do not have a large impact on the PVT equation of state of stishovite (Bolfan-Casanova et al., 2009) and bridgmanite (Andrault et al., 2007). (iii) We determined the compression behavior of hollandite and the associated phases typical of the basaltic composition in the lower mantle (Guignot et al. 2007). Our results show that the basaltic fraction of the subducted oceanic lithosphere remains denser than the peridotitic mantle at all mantle depths. It could therefore sink down to the lowermost mantle.

    Solid-state chemistry: Based on our experimental developments, we invited applications from solid-state chemistry to our experimental and analytical tools. The published works in the domain of new B-C-N based hard materials received a high number of citations. It concerns in particular the first mixed compound between diamond and cubic-BN (Solozhenko et al., 2001), which composition BC2N and its structure was obtained based on Rietveld refinements. We also synthesized diamonds with very high boron content (Solozhenko et al., 2009) and new low-compressibility carbon nitride polymorphs (Goglio et al., 2009).

  • Teaching Positions :

    2006 –            Professor at Université Clermont Auvergne, Clermont-Ferrand. I undertake a full University load of teaching covering Bachelor and Master’s courses.

    1993-2006     Associate Professor at Université Denis Diderot (Paris 7), Paris, France

    Current Teaching Activities :

    Planet habitability <Doctorate School of fundamental sciences> I present the early internal thermo-chemical state of our planet after its accretion and its evolution toward the establishment of our present-day planet presenting an active mantle dynamics associated to plate tectonics and volcanism, as well as a sustained geomagnetic field.

    Mineral Physics <Master Magmas & Volcans> Properties of the deep Earth mantle are reviewed, including diversity of mineral assemblages in various mantle settings, effect of Fe and Al on properties of bridgmanite, comparisons between PVT equations of state of minerals and seismic Vp, Vs and Rho, possible role of partial melting, chemical heterogeneities and phase transition on properties of the D « layer, role of water on seismic properties of the upper mantle and transition zone.

    Advanced Mineralogy <L3, Earth Sciences> The aim is to provide students with the basis for weaving links between the macroscopic properties and the fundamental laws of condensed matter.

    From Mineral to Rock <L2, Earth Sciences> In a series of practical courses, I teach the criteria used for the recognition of minerals in thin rock sections using the polarized light microscope.

    Earth Surface and Environment <L1, Earth Sciences> In a series of tutorial classes, I teach the basic concepts related to external and internal cycles of heat, water, and CO2.

    Regional Geology and volcanology <L1, Earth Sciences> A first excursion focuses on the contacts between Royat granites and basalt flows from the Petit Puy de Dôme. A second excursion describes contacts between lava flows and sedimentary material in landslides of the Puy de Graves.

  • Major Instrumental Developments :

    Upgrade of the ID27 beamline: The new beamline is now been designed, while the entire ESRF ring is been upgraded into the ESRF Extremely Brilliant Source. The expected gains are an X-ray flux ~100 times more intense and a spot size 10 times smaller, compared to the previous ID27 beamline. About 70 researchers from 34 different European scientific institutions participate to the project.

    Acquisition of a dual beam (SEM-FIB) apparatus in LMV, in the framework of the creation of the CarMa platform for advanced characterization of geological materials. We work actively for setting up a unique assemblage of state of the art analytical tools to enable physical and chemical tomographies in 3 dimensions of different types of samples: synthetic samples prepared in diamond anvil cell and multi-anvil press, natural samples such as melt inclusions and various samples of industrial interest. It implies the acquisition of a dual beam electron microscope with focused ion beam, as well as a nano X-ray tomograph.

    Laser heating in the diamond anvil cell at LMV: We have set-up and developed this new tool from 2015 to 2018. At present, we routinely perform experiments (i) to determine the melting properties of deep geological materials, (ii) to anneal melt inclusions at various conditions of pressure and temperature and (iii) we prepare tools to perform in situ determination of thermal conductivity.

    X-ray diffraction in the large volume press: Between 2013 and 2016, the LMV group has been leading the development and installation of a multi-anvil press at the PSICHE high-pressure beamline of the SOLEIL synchrotron. Both the module of compression and the global heating system were designed and installed by the LMV-OPGC group. The press is opened to the SOLEIL general users program since 2016.

    In situ measurements in the large volume press: After the new large volume press was installed in the LMV around year 2010, we developed a set of in situ measurements of rock-sample properties: electrical and thermal conductivities and acoustic velocities.

    New 1500 tones large volume press: A new large volume press was acquired by the LMV in 2009. We opted for a state of the art 1500T press associated with an original heating system designed to minimize the electrical noise for in situ experiments. This press is an INSU-CNRS National Instrument­.

    Laser heating in the diamond anvil cell at the ESRF: Several years ago, I actively participated to setting up one of the first experiment of laser heating in a diamond anvil cell coupled with synchrotron-based X-ray diffraction. This tool happened to provide unique information on the material properties at extreme conditions of pressure and temperature. Today, comparable systems are developed on most of the 3rd generation synchrotron facilities, coupled to different types of X-ray-based analytical techniques.

  • Scientific News (since 2009) :

    Iron sulfide may be keeping Mercury’s core toasty and its magnetic field alive (2019) ScienceNews

    Earth’s core has been leaking for billions of years (2019) The Conversation

    Évidence de la croissance de la graine dans la source des panaches mantelliques ? (2019) CNRS

    La dynamique interne de la planète à l’origine du développement de la vie sur Terre (2018) AFP

    La fusion partielle du manteau aurait retardé l’établissement de la tectonique des plaques pendant 2,5 milliards d’années (2018) INSU

    For the first ~2.5 Gy, the Earth’s upper mantle remained partially molten (2018) SOLEIL highlight

    Partial melting of the Earth’s mantle has delayed the establishment of plate tectonics for 2.5 billion years (2018) SOLEIL News

    Where oxygen originated (2018) ESRF news

    Confirmation expérimentale de la fusion partielle du manteau terrestre profond (2017) INSU

    Voyage au centre de la Terre près de Clermont-Ferrand (2016) AFP

    La Lune jouerait un rôle majeur dans le maintien du champ magnétique terrestre (2016) CNRS

    Des expériences confortent l’existence de fusion partielle dans le manteau supérieur (2016) INSU

    Going underground (2016) ESRF news

    Un scénario pour réconcilier la Terre et ses origines (2015) AFP

    Le recyclage des fonds océaniques dans les profondeurs de la Terre (2014) INSU

    Melting of subducted basalt at the Earth’s core-mantle boundary (2014) ESRF highlights

    L’origine des points chauds volcaniques révélée par les rayons X (2011) CNRS

    Une théorie sur la fusion du manteau terrestre confirmée par des scientifiques de Clermont-Ferrand (2018) Reportage FR3-Auvergne

    Ils ont percé les secrets de la Terre (2018) La Montagne

    Le manteau terrestre profond partiellement fondu à cause de l’eau (2018) La Minute Recherche, Université Clermont Auvergne

    La Lune jouerait un rôle majeur dans le maintien du champ magnétique terrestre (2017) La Minute Recherche, Université Clermont Auvergne

    Différenciation précoce des planétésimaux et implications sur l’évolution chimique des planètes (2013) Auvergne Science Magazine

    Acquisition d’une presse multi-enclume pour le laboratoire Magma et Volcans (2012) Fonds Européen pour l’Auvergne: Poster pour exposition itinérante

    Auvergne, Portrait : L’homme qui va au centre de la Terre (2012) La montagne

    X-rays illuminate the origin of the hot spot (2012) ESRF highlights et ESRF news

    Nouveau voyage au centre de la Terre (2011) La montagne

    The deepest phase transition in the Earth’s mantle (2011) ESRF Highlights et ESRF Spotlight

    Les premiers stades de la formation de la Terre déchiffrés par l’expérimentation à hautes pressions et températures (2011) Auvergne Science Magazine

    Composition chimique de la Terre : des météorites au manteau terrestre en passant par l’expérimentation à hautes pressions et températures (2011) Auvergne Science: Magazine online

    Take a trip from the centre of the Earth to its surface (2009). ESRF-News

    Finding the next best thing after diamond (2009) ESRF-News

    Patents :

    Discovery and process of synthesis of BC5 (2007) French Patent FR INPI n°0702637.

    Discovery and process of synthesis of BC2N (2001) Ukrainian Patent.

    Books, Chapters, Theses :

    Brunet F., D. Andrault, G. Chazot (2007-Book) « L’intérieur de la Terre: Roches et matériaux en conditions extrêmes », Edition Vuibert, 184 p.

    Bolfan-Casanova N, D. Andrault, T. Hammouda, et al. (2005-Book-chapter) « Etudes in situ en cellules gros volume » in « Outils et méthodes pour la recherche à haute pression » Publication of Réseau CNRS des Hautes Pressions, 35 p.

    Andrault D. (2004-Book-chapter) « Transitions de phase à haute pression » in « La pression: un outil pour les sciences », Editions du CNRS, 35 p.

    Andrault D. (1998-HDR-Thesis) « Comportement des minéraux sous conditions extrêmes de pression et température ». Thèse d’Habilitation à Diriger des Recherches, Université Paris-7, 46 p..

    Andrault D. (1990-PhD-Thesis). « Étude par absorption X sous pression de pyroxènes, d’ilménites, et de perovskites ». Thèse de Doctorat, Université Paris-6, 163 p.

    Andrault D. (1987-Master-Thesis). « Étude en microscopie électronique de (Mg,Fe)O, constituant important du manteau inférieur ». Thèse de Diplôme15 d’Etudes Approfondies, Université Paris-6, 42 p.

    15 Selected Major Articles :

    Rizo H., Andrault, M. Humayun, A ; Brandon, I. Vlastelic, A. Simonetti, B. Moine, A. Poirier, M.A. Bouhifd (2019) 182W evidence for core-mantle interaction in the source of mantle plumes, Geochemical Perspective Letters, 11, 6–11.

    Andrault D., G. Pesce, G. Manthilake D. Novella,, J. Monteux, N. Bolfan-Casanova, J. Chantel, Pointud, N. Guignot, A. King, and L. Hennet (2018) Deep and persistent melt layer in the Archaean mantle. Nature Geoscience, 11, 2, 139-146.

    Andrault D., M. Muñoz, G. Pesce, V. Cerantola, A. Chumakov, I. Kantor, S. Pascarelli, R. Rüffer, L. Hennet (2018) Large oxygen excess in the primitive mantle could be the source of the Great Oxygenation Event. Geochemical Perspective Letters, 6, 5-10.

    Clesi V., M.A. Bouhifd, N. Bolfan-Casanova, G. Manthilake, F. Schiavi, C. Raepsaet, H. Bureau, H. Khodja, Andrault (2018) Low hydrogen contents in the core of terrestrial planets. Science Advances. 4, e1701876.

    Freitas D, G. Manthilake, F. Schiavi, J. Chantel, N. Bolfan-Casanova, MA. Bouhifd, Andrault (2017) Dehydration melting in the deep Earth’s upper mantle, Nature Communication, 8, 2186.

    Andrault D., J. Monteux, M. Le Bars, H. Samuel (2016) The deep Earth may not be cooling down. Earth and Planetary Science Letters, 443, 195-203.

    Boujibar A., Andrault, N. Bolfan-Casanova, M.A. Bouhifd (2015) Early cosmochemical fractionation through collisional erosion; an integral model for the Earth’s accretion, Nature Communication. 6:8295, DOI: 10.1038/ncomms9295.

    Andrault D., G. Pesce, M.A. Bouhifd, J.M. Hénot, M. Mezouar (2014) Melting of basalt at the core-mantle boundary, Science, 344, 6186, 892-895.

    Morard G., Andrault, D. Antonangeli, J. Bouchet (2014) Properties of iron alloys under Earth’s core conditions. Comptes Rendus de l’Académie des Sciences, 346, 5-6, 130-139.

    Andrault D., S. Petitgirard, G. lo Nigro, JL. Devidal, G. Veronesi, G. Garbarino, M. Mezouar (2012) Solid-liquid iron partitioning in the deep Earth’s mantle, Nature, 487, 354-357.

    Andrault D., N. Bolfan-Casanova, G. Lo Nigro, M.A. Bouhifd, G. Garbarino, M. Mezouar (2011) Solidus and liquidus profiles of chondritic mantle: Implication for melting of the Earth across its history, Earth and Planetary Science Letters, 304, 251-259

    Andrault D., M. Muñoz, N. Bolfan-Casanova, N. Guignot, J.-P. Perrillat, G. Aquilanti, S. Pascarelli (2010) Experimental evidence for perovskite and post-perovskite coexistence throughout the whole D » region, Earth and Planetary Science Letters, 293, 1-2, 90-96.

    Javoy M., E. Kaminski, F. Guyot, Andrault, C. Sanloup, M. Moreira, S. Labrosse, A. Jambon, P. Agrinier, A. Davaille,C. Jaupart (2010) The chemical composition of the Earth: Enstatite chondrite models, Earth and Planetary Science Letters, 293, 3-4, 259-268.

    Solozhenko V.L., Andrault, G. Fiquet, and D. Rubie (2001) High pressure synthesis of cubic BC2N, a new super hard phase. Applied Physics Letter, 78: 1385-1387.

    Andrault D., G. Fiquet, F. Guyot, and M. Hanfland (1998) Pressure-induced landau-type transition in stishovite. Science, 23: 720-724.

  • Publications (since 2010) :

    Rank A :

    [Publications nom= »Andrault » prenom= »Denis » rang= »Rang A »]

    Rank B et C :


    • Andrault D. (2019). Evidence de la croissance de la graine dans la source des panaches ?. Comité National de la Recherche Scientifique, Paris, France, Juin 2019.
    • Andrault D. (2019). Phase transformations, chemical reactions and melting properties investigated in situ using the laser heated diamond anvil cell. Workshop on High Pressure Technics, ESRF, France.
    • Andrault D. (2019). Redox state of the molten mantle. Workshop of Nuclear Resonance scattering, ESRF, France.
    • Andrault D. (2019). The great oxygenation event. Workshop Outgassing Process, Villefranche-sur-mer, France.
    • Andrault D., et al. (2019). Phase transformations, chemical reactions and melting properties investigated in situ using the laser heated diamond anvil cell. Workshop on High Pressure Technics, ESRF, France.
    • Andrault D., et al. (2019). Redox state of the molten mantle. Workshop of Nuclear Resonance scattering, ESRF, France.
    • Andrault D., et al. (2019). The great oxygenation event. Workshop Outgassing Process, Villefranche-sur-mer, France.
    • Monteux J., Andrault D., Guitreau M., Samuel H., Demouchy S. (2019). The influence of the Earth’s early mantle viscosity on its cooling dynamics. EPSC-DPS Joint Meeting 2019.

    • Andrault D. (2018). Large oxygen excess in the primitive mantle could be the source of the Great Oxygenation Event. AGU-Fall, Washington, USA.
    • Andrault D. (2018). Melting curve of SiO2 up to more than 100 GPa and 6000 K with detection of the Si coordination change in the liquid. ESRF User Meeting, Grenoble, France.
    • Andrault D. (2018). The major Archean to Proterozoic geological transition investigated by means of Mineral Physics. Geophysical Laboratory, Washington DC, USA, déc. 2018.
    • Andrault D., et al. (2018). Deep and persistent melt layer in the Archaean mantle. AGU-Fall, Washington, USA.
    • Andrault D., et al. (2018). Large oxygen excess in the primitive mantle could be the source of the Great Oxygenation Event. Programme National de Planétologie, Nice, France.
    • Andrault D., et al. (2018). Large oxygen excess in the primitive mantle could be the source of the Great Oxygenation Event. AGU-Fall, Washington, USA.
    • Andrault D., et al. (2018). Melting curve of SiO2 up to more than 100 GPa and 6000 K with detection of the Si coordination change in the liquid. EMPG XVI, Clermont-Ferrand, France.
    • Andrault D., et al. (2018). Melting curve of SiO2 up to more than 100 GPa and 6000 K with detection of the Si coordination change in the liquid. ESRF User Meeting, Grenoble, France.
    • Andrault D., et al. (2018). On the cooling of the early Earth. Programme National de Planétologie, Nice, France.
    • Andrault D., et al. (2018). Thermal state of the deep Earth along history: an evolution controlled by its melting properties. Swiss Federal Institute of Technology, Zurich, Switzerland.
    • Clesi V., Bouhifd A., Bolfan-Casanova N., Bureau H., Andrault D. (2018). Water during core/mantle segregation: implications on hydrogen incorporation in the core of the Earth and Mars. EGU.
    • Clesi V., Bouhifd A., Bolfan-Casanova N., Manthilake G., Schiavi F., Raepsaet C., Bureau H., Khodja H., Andrault D. (2018). Low hydrogen contents in the cores of terrestrial planets. EMPG-XVI, Clermont-Ferrand, 17-21 juin 2018.
    • Freitas D., Manthilake G., Bouhifd A., Andrault D. (2018). Effect of melt content and the melt texture on sound wave velocity and electrical conductivity Simultaneous measurements of electrical conductivity and seismic velocity of partially molten geological materials: Effect of evolving melt texture. Congrès Des Doctorants du LMV / POST EMPG, Clermont-Ferrand, France, Dec 2018.
    • Freitas D., Manthilake G., Schiavi F., Chantel J., Bolfan-Casanova N., Bouhifd A., Andrault D. (2018). Experimental evidence supporting a global melt layer at the base of the Earth’s upper mantle. AGU Fall meeting 2018, Washington DC, USA.
    • Freitas D., Manthilake G., Schiavi F., Chantel J., Bolfan-Casanova N., Bouhifd A., Andrault D. (2018). Experimental evidence supporting a global melt layer at the base of the Earth’s upper mantle. AGU Fall meeting 2018, Washington DC, USA.
    • Freitas D., Manthilake G., Schiavi F., Chantel J., Bolfan-Casanova N., Bouhifd A., Andrault D. (2018). Experimental evidence supporting global melt layer at the base of the Earth's upper mantle. EMPG-XVI, Clermont-Ferrand, 17-21 juin 2018.
    • Freitas D., Manthilake G., Schiavi F., Chantel J., Bolfan-Casanova N., Bouhifd A., Andrault D. (2018). Mise en évidence de la présence d'un niveau de magma à la base du Manteau supérieur. Journées scientifiques ClerVolc, Clermont-Ferrand, France, May 2018.
    • Manthilake G., Chantel J., Andrault D., Monteux J., Bouhifd A., Bolfan-Casanova N., Boulard E., Guignot N., King A., Itie J.P. (2018). Electrical conductivity of Fe−S alloys at high pressure and high temperature: Implications for Mercury’s weak and long−lived magnetic field. EMPG XVI conference abstract, Clermont-Ferrand, 17-21 juin 2018.
    • Manthilake G., Freitas D., Schiavi F., Chantel J., Bolfan-Casanova N., Bouhifd A., Andrault D. (2018). Experimental evidence supporting a global melt layer at the base of the Earth’s upper mantle. International Symposium FY2017 Annual General Meeting, Ehime, Japan, Mar 2018.
    • Manthilake G., Freitas D., Schiavi F., Chantel J., Bolfan-Casanova N., Bouhifd A., Andrault D. (2018). Experimental evidence supporting a global melt layer at the base of the Earth’s upper mantle. International Symposium FY2017 Annual General Meeting, Ehime, Japan.
    • Monteux J., Andrault D., Samuel H. (2018). On the cooling of a deep mushy mantle. EMPG XVI Conference abstract, Clermont-Ferrand, 17-21 juin 2018.
    • Monteux J., Andrault D., Samuel H. (2018). On the cooling of a deep mushy mantle. Programme National de Planétologie, Nice, France, 5-7 sept 2018.
    • Rosenthal A., McCammon C., Crichton W.A., Cerantola V., Chumakov A., Vasilyev P., Laubier M., Andrault D., Jacob D.E., Yaxley G.M., Woodland A.B., Foley S.F., Pearson D.G., Laporte D., Njul R., Schulze H. (2018). Determination of the valence/oxidation state of iron in natural peridotitic and eclogitic garnets by synchrotron Moessbauer spectroscopy. XXII Meeting of the International Mineralogical Association, Melbourne, Australia, 13-17 August 2018.

    • Andrault D. (2017). Comment le changement de régime de convection à la transition Archéen-Protérozoïque pourrait être à l'origine d'une évolution majeure de l'état rédox à la surface de la Terre. LMV Seminar, Clermont-Ferrand, France.
    • Andrault D. (2017). Melting properties of the deep Earth’s mantle: Implications for the magma ocean crystallization. High-Pressure Mineral Physics Symposium, St Malo, France.
    • Andrault D., Bolfan-Casanova N., Bouhifd A., Boujibar A., Boyet M., Cartier C., Clesi V., Doucelance R., Hammouda T., Laubier M., Manthilake G., Marin-Carbonne J., Martin H., Moine B., Monteux J., Moyen J.F., Paquette J.L. (2017). Environnement de la Terre primitive: Comment construire une planète habitable ? Groupe de Recherche : ''Mécanismes géodynamiques de la Terre primitive''. Revue d'Auvergne vol.262-263, p.7-40.
    • Andrault D., et al. (2017). The major Archean to Proterozoic geological transition investigated by means of Mineral Physics. Geophysical Laboratory, Dc, USA, Dec 2018.
    • Freitas D., Manthilake G., Andrault D. (2017). Caractérisation des matériaux aux conditions extrèmes : utilisation du rayonnement synchrotron. 4éme Rencontre des microscopistes clermontois, Clermont-Ferrand, France, 05/10/2017.
    • Freitas D., Manthilake G., Chantel J., Bouhifd A., Andrault D. (2017). Effect of melt content and the melt texture on sound wave velocity and electrical conductivity. Golschmidt, Paris, France, Aug 2017.
    • Manthilake G., Bolfan-Casanova N., Hammouda T., Andrault D., Pointud F., Mathieu A., Fruquière J.L., Guillot C. (2017). Instruments Nationaux : la Presse Multi-enclumes. Revue d'Auvergne vol.262-263, p.291-302.
    • Manthilake G., Freitas D., Schiavi F., Chantel J., Bolfan-Casanova N., Bouhifd A., Andrault D. (2017). Experimental evidence supporting a global melt layer at the base of the Earth’s upper mantle. HPMPS, Saint Malo, France, 9, Sep 2017.
    • Maurice J., Bolfan-Casanova N., Laubier M., Andrault D. (2017). Experimental investigation of ferric iron partitioning during hydrous melting: Implication for the redox state of arc magmas. Goldschmidt Conference, Paris, 13-18 August.
    • Samuel H., Michaut C., Baratoux D., Monteux J., Andrault D., Kurita K. (2017). The Early Thermal Evolution and Delamination of Mars’ Crust. Goldschmidt, Paris.

    • Andrault D. (2016). An alternative scenario for the thermal and geomagnetic evolution of the Earth. Structure of the Deep Earth Interior (SEDI) Meeting, Nantes, France.
    • Andrault D. (2016). An alternative scenario for the thermal and geomagnetic evolution of the Earth. Magma Oceanology Workshop, Tokyo, Japan.
    • Andrault D. (2016). La Lune jouerait un rôle majeur dans le maintien du champ magnétique terrestre. Séminaire Générale du Laboratoire Leprince-Ringuet, Ecole Polytechnique, Palaiseau, France.
    • Andrault D. (2016). Melting properties of the deep Earth’s mantle. LMV Seminar, Clermont-Ferrand, France.
    • Andrault D. (2016). Project of a new advanced high-flux nano-XRD beamline for science under extreme conditions. ESRF, multidisciplinary workshop on the ESRF upgrade phase II, Grenoble, France.
    • Andrault D. (2016). Thermal state of the deep Earth. European Synchrotron Radiation Facility, Grenoble, France.
    • Andrault D., et al. (2016). A rational model for the evolution of the Core-Mantle boundary temperature since the Earth’s accretion. Magma Oceanology Workshop, Tokyo, Japan.
    • Clesi V., Bouhifd A., Bolfan-Casanova N., Manthilake G., Fabbrizio A., Andrault D. (2016). Effect of H2O on metal-silicate partitioning of Ni, Co, V, Cr, Mn and Fe: Implications for Earth and Mars. EMPG XV, Zürich, June 5 – 8.
    • Freitas D., Manthilake G., Chantel J., Andrault D. (2016). Mesures simultanées de conductivité électrique et de vitesse d'ondes sismiques de matériaux géologiques partiellement fondus à haute pression et haute température : implication pour la fraction de liquide silicaté dans l'asthénosphère. 10e forum de technologie des hautes pressions du CNRS, Le Londe les Maures, France, Oct 2016.
    • Monteux J., Andrault D., Samuel H. (2016). On the cooling of a deep terrestrial magma ocean. SEDI, Nantes, 24-29 Juillet 2016.
    • Monteux J., Andrault D., Samuel H. (2016). On the cooling of a deep terrestrial magma ocean. Atelier Terre Primitive, Saint-Etienne, 24-25 Novembre 2016.

    • Andrault D. (2015). How the thermal state of the deep Earth and the presence of the Moon affect our planet habitability. Swiss Federal Institute of Technology, Zurich, Switzerland.
    • Andrault D. (2015). How the thermal state of the deep Earth and the presence of the Moon affect our planet habitability. Institute for Study of the Earth Interior, Misasa, Japan.
    • Andrault D. (2015). Melting of bridgmanite to 135 GPa: Toward a coherent mineralogical model for the melting behavior in the lower mantle. AGU-Fall,, San-Francisco, USA.
    • Andrault D., Monteux J., Le Bars M., Samuel H. (2015). A steady thermal state for the Earth’s interior. AGU Fall Meeting, San Francisco, 14-18 décembre 2015.
    • Andrault D., et al. (2015). A steady thermal state for the Earth's interior. AGU-Fall, San-Francisco, USA.
    • Andrault D., et al. (2015). How the thermal state of the deep Earth and the presence of the Moon affect our planet habitability. Swiss Federal Institute of Technology, Zurich, Switzerland.
    • Andrault D., et al. (2015). How the thermal state of the deep Earth and the presence of the Moon affect our planet habitability. Institute for Study of the Earth Interior, Misasa, Japan.
    • Andrault D., et al. (2015). Melting of bridgmanite to 135 GPa: Toward a coherent mineralogical model for the melting behavior in the lower mantle. AGU-Fall, San-Francisco, USA.
    • Andrault D., et al. (2015). Melting properties of the deep Earth's mantle investigated by in situ measurements. SOLEIL User Meeting, Gif-sur-Yvette.
    • Andrault D., et al. (2015). Mineralogy and compositional models of the Deep Earth. Goldschmidt, Prague.
    • Andrault D., et al. (2015). The melting behavior of different deep-mantle silicate phases. The 8th Kumamoto International Symposium on Recent Advancements of Physics and Mineralogy, Kumamoto, Japan.
    • Boujibar A., Andrault D., Bolfan-Casanova N., Bouhifd A. (2015). Cosmochemical Fractionation by Collisional Erosion During the Earth’s Accretion. Workshop on Early Solar System Impact Bombardment III, Houston, USA, February 2015.
    • Boujibar A., Andrault D., Bolfan-Casanova N., Bouhifd A. (2015). Redox State of the Terrestrial Planets, New Insights into Parental Links with Chondrites. Goldschmidt Conference, Praha, Czech Republic, August.
    • Clesi V., Bouhifd A., Bolfan-Casanova N., Manthilake G., Andrault D. (2015). Effect of H2O on Metal-Silicate partitioning of Ni, Co, V, Cr, Mn and Fe: Implications for Earth and Mars. Goldschmidt Conference, Prague, august 2015.
    • Fabbrizio A., Bouhifd A., Andrault D., Bolfan-Casanova N., Manthilake G., Laporte D. (2015). Argon solubility in H2O-CO2 bearing basaltic melts at upper mantle conditions. Goldschmidt Conference, Prague, august 2015.
    • Fabbrizio A., Bouhifd A., Andrault D., Bolfan-Casanova N., Manthilake G., Laporte D. (2015). Argon solubility in H2O-CO2 bearing basaltic melts at upper mantle conditions. Goldschmidt 2015, Prague.
    • Manthilake G., Mookherjee M., Bolfan-Casanova N., Andrault D. (2015). Electrical conductivity of lawsonite and dehydrating fluids at high-pressures and temperatures. Goldschmidt, Prague.
    • Monteux J., Andrault D., Samuel H. (2015). On the cooling of a deep terrestrial magma ocean. European Planetary Science Congress 2015, Nantes, France, 27 September - 2 October, 2015.
    • Monteux J., Andrault D., Samuel H. (2015). On the cooling of a deep terrestrial magma ocean. AGU Fall Meeting, San Francisco, 14-18 décembre 2015.
    • Pesce G., Manthilake G., Andrault D., Monteux J., Bolfan-Casanova N., Novella D., Guignot N., Chantel J. (2015). On the cooling of a deep terrestrial magma ocean: Experimental perspective. AGU Fall Meeting.
    • Pesce, G., Andrault D., Manthilake G., Monteux J., Bolfan-Casanova N., Novella D., Guignot N., Chantel J. (2015). On the cooling of a deep terrestrial magma ocean: Experimental perspectives. AGU Fall Meeting, San Francisco, 14-18 décembre 2015.

    • Andrault D. (2014). Early cosmochemical fractionation through collisional erosion. Séminaire Général, Institut de Recherche en Astrophysique et Planétologie, Toulouse.
    • Andrault D. (2014). Early cosmochemical fractionation through collisional erosion Séminaire Général, Institut de Recherche en Astrophysique et Planétologie, Toulouse. .
    • Andrault D. (2014). Early cosmochemical fractionation through collisional erosion, a solution to the enstatite chondrite Earth model Workshop “Accretion and Early Differentiation of the Terrestrial Planets », Nice. .
    • Andrault D. (2014). Installation d’une presse à multi-enclumes sur la ligne Psiché de SOLEIL pour la diffraction X et l’imagerie sous haute pression (P=1-25 GPa) et haute température (T=300-2300 K). Forum du Réseau CNRS des hautes pressions, La Rochelle. .
    • Andrault D. (2014). Phase transition in aluminous silica at lowermost mantle P-T conditions. ESRF User Meeting, Grenoble. .
    • Andrault D. (2014). Voyage dans le Cristal. Fête de la Science de l’Université, Blaise Pascal, Clermont-Ferrand.
    • Andrault D. (2014). Voyage dans le Cristal. Fête de la Science de l’Université Blaise Pascal, Clermont-Ferrand. .
    • Bouhifd A., Andrault D., Pesce G., Petitgirard S., Rivard C. (2014). Potassium in the Earth’s Core: New Experiments in a Deep Magma Ocean. Goldschmidt Conference, Sacramento 8-13 Juin 2014, Abstract N° 246. .
    • Boujibar A., Andrault D., Bolfan-Casanova N., Bouhifd A. (2014). Early cosmochemical fractionation by collisional erosion during the Earth’s accretion. AGU Fall Meeting, San Francisco 15-19 décembre 2014. .
    • Boujibar A., Andrault D., Bolfan-Casanova N., Bouhifd A. (2014). Early cosmochemical fractionation through collisional erosion, a solution to the enstatite chondrite Earth model. Workshop “Accretion and Early Differentiation of the Terrestrial Planets", Nice.
    • Pesce G., Manthilake G., Andrault D., Bolfan-Casanova N. (2014). Experimental Investigations of the Deep Earth's Mantle Melting Properties. AGU Fall meeting.

    • Andrault D. (2013). Fusion du manteau profond de la Terre Primitive à la Terre actuelle. in Grand Séminaire ISTerre, Institut des Sciences de la Terre, Grenoble. .
    • Andrault D. (2013). L'énigmatique couche D située à ~2900 km de profondeur juste au dessus de l'interface noyau-manteau. in Séminaire Général du Laboratoire Magmas et Volcans, Clermont-Ferrand. .
    • Andrault D. (2013). Melting properties of the deep Earth's mantle. in Joint WHOI-MIT Geodynamics Seminar Program, Boston. .
    • Andrault D. (2013). Phase transition in aluminous silica at lowermost mantle P-T conditions. in Goldschmidt, Florence. .
    • Bouhifd A., Andrault D., Bolfan-Casanova N. (2013). Thermodynamics of Lower Mantle Minerals. in Goldschmidt. Florence. .

    • Andrault D. (2012). Does partial melting occur today in the D-layer? What would happen to the liquids? Workshop on structure and dynamics of the earth’s deep mantle, Collège de France, Paris. .
    • Andrault D. (2012). Développements récents de l'Instrument National INSU-CNRS: Presse à Multi-enclumes. Forum du Réseau Technologique des Hautes Pressions. Riom. .
    • Andrault D. (2012). Melting relations in deep Earth retrieved from coupled X-ray diffraction and fluorescence analyses at high pressure. Workshop : High Pressure Studies using Synchrotron Radiation:Present and Future: user-Meeting de SOLEIL, Gif-sur-Yvette.
    • Andrault D. (2012). Solid-liquid iron partitioning in Earth’s deep mantle. AGU-Fall, San-Francisco, USA. .
    • Bouhifd A., Andrault D., Bolfan-Casanova N. (2012). Géochimie des gaz rares à haute pression et haute température. Forum du Réseau CNRS des Hautes Pressions, Enval.
    • Bouhifd A., Andrault D., Bolfan-Casanova N., Hammouda T., Devidal J.L. (2012). The effect of metal composition on Pb-U metal-silicate partition coefficients at high pressures and temperatures: Implications for Earth´s core. XII EMPG, Kiel, 4-7 mars 2012. .
    • Bouhifd A., Boyet M., Andrault D., Bolfan-Casanova N., Devidal J.L. (2012). No REE into the Earth’s core. Goldschmidt, Montreal. .
    • Boujibar A., Andrault D., Bolfan-Casanova N., Bouhifd A. (2012). Conditions de fO2 très réductrices à très hautes températures en presse à multi-enclumes: application à la cristallisation de l’océan magmatique. Forum du Réseau CNRS des Hautes Pressions, Enval, 22-26 octobre 2012.
    • Boujibar A., Andrault D., Bouhifd A., Bolfan-Casanova N., Trcera N. (2012). Metal-silicate Sulfur partitioning and its implication for core formation. AGU Fall Meeting, San Francisco, 3 - 7 December 20.

    • Andrault D., Lo Nigro G., Bolfan-Casanova N., Bouhifd A., Garbarino G., Mezouar M. (2011). Melting properties of chondritic mantle to the core-mantle boundary: 11th Goldschmidt Conference, August 2011 Prague, Mineralogical Magazine, vol. 75 (3), page 438. .
    • Bouhifd A., Andrault D. (2011). Composition chimique de la Terre : des météorites au manteau terrestre en passant par l’expérimentation à hautes pressions et températures: Auvergne Science Magazine, p. on line - Janvier 2011. .
    • Bouhifd A., Andrault D. (2011). Les premiers stades de la formation de la Terre déchiffrés par l'expérimentation à hautes pressions et températures: Auvergne Science Magazine, p. on line - Février 2011. .

    • Andrault D., et al. (2010). Earth Science and the ESRF-ILL Partnership for Extreme Condition Science: Round Table. ESRF User meeting, Grenoble. .
    • Andrault D., et al. (2010). Experimental evidence for perovskite and post-perovskite coexistence throughout the whole D region. Goldschmidt, Knoxville.
    • Andrault D., et al. (2010). Experimental evidence for perovskite and post-perovskite coexistence throughout the whole D region. European Geosciences Union, Vienna.
    • Andrault D., et al. (2010). Fusion du manteau profond. in Journée Scientifique du LMV, Laboratoire Magmas et Volcans, Clermont-Ferrand. .
    • Andrault D., et al. (2010). Melting curve of the deep mantle applied to properties of early magma ocean and actual core-mantle boundary. in European Geosciences Union, Vienna. 2010. .
    • Andrault D., et al. (2010). Melting curve of the deep mantle applied to properties of early magma ocean and actual core-mantle boundary. in Goldschmidt, Knoxville. 2010. .

    
    

 

 

 

 

 

 

 

 

 

 

Print Friendly, PDF & Email